作为一无名无私奉献的教育工作者,可能需要进行教案编写工作,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?以下是小编为大家收集的圆的面积教案5篇,仅供参考,大家一起来看看吧。
圆的面积教案 篇1教学内容:
苏教国标版五年级下册103-105页及练一练和练习十九1-3题。
教材分析:
本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。
教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。
学情分析:
1、学生已有知识基础
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
2、对后继学习的作用
圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。
教学目标:
1、知识与技能:
(1)理解圆的面积的含义。
(2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。
(3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。
2、过程与方法:
经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。
3、情感与态度:
感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。
教学重点:正确掌握圆面积的计算公式。
教学难点:圆面积计算公式的推导过程。
教学准备:
1.CAI课件;
2.把圆16等分、32等分和64等分的硬纸板若干个;
教学设计:
一、创设情境,提出问题。
投影出示草坪喷水插图
师:请大家观察这幅插图,说说从图中你能发现数学知识吗?
学生观察、讨论并交流:
生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。
生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;
生3:这个圆形的中心就是喷头所在的地方。
师:请大家说说这个圆形的面积指的是哪部分呢?
生4:被喷到水的草坪大小就是这个圆形的面积。
师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)
二、自主探究,合作交流:
1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?
板书:正方形的边长=圆的半径r
正方形的面积=r2
2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?
3、教学例7
⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。
⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。
⑶小组汇报(实物投影展示学生填写的表格)
⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。
⑸小组汇报交流
⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?
板书:S=r2×3倍多
[设计意图]
让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。
三、动手操作,探索新知
1.回忆平行四边形、三角形、梯形面积计算公式推导过程。
(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的'面积计算公式是怎样推导出来的?
(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?
(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?
2.推导圆面积的计算公式。
(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?
(2)学生小组讨论。
看拼成的长方形与圆有什么联系?
学生汇报讨论结果。
(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)
(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?
生边答师边演示课件。
生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。
因为长方形的面积=长×宽
所以圆的面积=周长的一半×半径
S=πr×r
S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?
(5)读公式并理解记忆。
(6)要求圆的面积必须知道什么?(半径)
四、联系实际,解决问题:
1教学例9
(1)课件出示例9;
(2)说出已知条件和问题;
(3)学生自己试做;
(4)讲评,注意公式、单位使用是否正确。
2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。
五、全课总结,课后延伸:
1、今天 ……此处隐藏1508个字……份的图开始看可以观察到,这条边的倾斜度越来越小,最后它就会变得无限接近于90度的竖线,而这个图形也会近似的什么图形?
X:长方形。
(板书:长方形)
S:它不是真正的长方形,而是一个无限接近于长方形的近似长方形。 正如课本68页最上面的这句话。
3. 电子课本P68
S:如果分的。。。。。。长方形。同时我们的小精灵又给我们提出了一个问题:拼成的。。。。。关系?
S:请大家注意看我的课件演示。(讲解)
板书:长方形的面积= 长 *宽 圆的面积=圆周长的一半 * 半径 =C*r 2
=2π
2r*r
=πr*r
2 =πr
2即 S=πr
S:从这条公式我们可以看出,要想求出圆的面积,只要知道什么就可以了?
X:半径。
S:同学真聪明。好的,现在我们已经掌握了圆面积的计算公式了,要不要试一试这条公式好不好用?
S:来看一下咱们这节课刚开始看到的这个圆形花坛,原来它的直径有20m,要想求出它的面积,先要求出什么来?
X:半径。
学生先做题,再用课件演示答案。
三. 拓展练习。
1. 回答(尽量不要动笔)。
2. 计算(78.5 m2)
S= πr2
2 = 3.14×5
= 3.14×5×5
=3.14×25
=78.5 (m2)
四. 回顾总结。
谁愿意和大家分享你的学习成果?(学生自己总结)
老师补充:1.化圆为方。
2. S= πr2
3.计算圆面积的必要条件是什么(半径)
板书:
1. 化圆为方。
圆的面积教案 篇5教学目标:
1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。
2、使学生进一步体会“转化”方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。
3、体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。
教学重点:
探索并掌握圆的面积公式,能正确计算圆的面积。
教学难点:
理解圆的面积公式的推导过程。
教学准备:
圆的面积公式的推导图。
一、回顾旧知,引入新知
1、师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。
学生回答,教师予以肯定。
2、提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?
3、引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。
(板书:圆的面积)
设计意图通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。
二、合作交流,探究新知
1、教学例7。
(l)初步猜想:圆的面积可能与什么有关?说说你猜想的依据。
(2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。
(3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?
(4)学生独立完成填空。
(5)猜测:圆的面积大约是正方形面积的几倍?
学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。
(6)出示例7后两幅图,按照同样的方法进行计算并填表。
正方形的面积/
圆的半径/
圆的面积/
圆面积大约是正方形面积的几倍
(精确到十分位)
2、交流归纳:观察上面的表格,你有什么发现?
通过交流,明确
(1)圆的面积是它的半径平方的3倍多一些。
(2)圆的面积可能是半径平方的兀倍。
3、教学例8。
(l)谈话:经过刚才的学习,我们已经知道圆的面积大约是它半径平方的3倍多一些,那么圆的面积究竟应该怎样来计算呢?
(2)操作体验:教师演示把圆平均分成16份,并拼成一个近似的平行四边形。
(3)提问:拼成的图形像什么图形?追问:为什么说它像一个平行四边形?
初步想象:如果把圆平均分成32份,也用类似的方法拼一拼,想一想,拼成的图形与前面的图形相比有怎样的变化?
(4)进一步想象:如果将圆平均分成64份、128份,也用类似的方法拼一拼。闭上眼睛想一想,随着份数的增加,拼成的图形会越来越接近一个什么图形?
(5)交流后,教师出示推导图。拼成的长方形与原来的圆有什么联系?在小组中讨论交流。
(6)在集体交流中借助图示小结:长方形的面积与圆的面积相等;长方形的宽是圆的半径;长方形的长是圆周长的一半。
(7)追问:如果圆的半径是r,长方形的长和宽应该怎样表示?根据长方形面积的计算方法,怎样来计算圆的面积?
(8)根据学生的回答,教师板书
长方形的面积一长×宽
圆的面积=
(9)追问:有了这样一个公式,知道圆的什么条件,就可以计算圆的面积了?
4、教学例9。
(1)出示例9,提问:有没有在生活中见过自动旋转X器?
(2)想象一下自动X器旋转一周后喷灌的地方是什么图形,X的最远的距离是什么意思。
(3)学生独立完成计算。
(4)集体交流。
5、教学例10。
(1)请同学读题,解读题意。
(2)找出题中的已知条件。
(3)分析解题过程。
(4)明确各个量之间的转化关系。
三、巩固练习,加深理解
1、完成“练一练”。
(1)学生独立解答。
(2)集体交流。
2、完成练习十五第1题。
(l)学生独立解答。
(2)集体交流。
3、完成练习十五第3题。
(1)学生列式后用计算器计算。
(2)集体交流。
4、完成练习十五第4题。
(1)学生独立解答。
(2)集体交流,指出:已知周长求面积,先要根据周长求出半径。
5、作业:练习十五第2、5题。
四、课堂小结
师:通过今天的学习,你有什么收获?
学生发言,教师点评。
圆的面积
长方形的面积=长×宽
圆的面积