《梯形面积》 教学反思

时间:2025-04-18 17:53:23
《梯形面积》 教学反思

作为一名人民老师,我们的任务之一就是课堂教学,写教学反思能总结我们的教学经验,那么写教学反思需要注意哪些问题呢?以下是小编为大家整理的《梯形面积》 教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《梯形面积》 教学反思1

本节课的内容是在学生学习了平行四边形的面积、三角形的面积以及梯形的图形特征基础上进行教学的。在前面的学习中,学生已经能够通过拼摆独立推导出图形的面积计算公式,初步领悟了图形转化的数学思想。

成功之处:

多种方法推导梯形的面积,发挥学生的创造力。在教学中首先让学生用自己准备的两个完全一样的梯形通过拼摆,独立推导梯形的面积计算公式,即用两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是所拼成的平行四边形面积的一半,平行四边形的底等于梯形的上底与下底的和,所以梯形的面积=(上底+下底)×高÷2。然后让学生思考能不能根据一个梯形进行面积公式的推导呢?从而得出以下几种方法:

(1)把梯形剪成一个平行四边形和一个三角形,梯形的面积=平行四边形的面积+三角形的面积。

(2)把梯形剪成两个三角形,梯形的面积=两个三角形的面积之和。

在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解了梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。

不足之处:

由于用多种方法探索梯形的面积计算公式,导致基本方法中出现部分学生不会叙述。

再教设计:

突出基本方法的教学,注意其它方法的时间分配。

《梯形面积》 教学反思2

教学时我首先让学生回忆平行四边形和三角形的面积公式的推导过程,都用到了哪种解决问题的方法,然后提出问题:梯形是不是也可以像它们一样可以转化成已学过几何图形呢?在学生操作前,课件显示以下几个问题引导学生探究:

1、转化成的平面图形的面积与原来梯形的面积有什么联系?

2、梯形的底和高和转化后的图形的各部分又有什么联系?

学生操作后发现方法不止一种。我引导学生重点分析和课本上一致的推导方法,一是因为大多数学生采用的都是这种方法,二是这种方法推导梯形的面积最容易理解、最简洁。其它方法有的拼出的是特殊的平行四边形,有的推导的过程较复杂,在课堂上让选择这样的同学简单交流,没有展示推导过程。最后小结不管用哪种方法来推,都能推出梯形的面积计算公式:(上底+下底)×高÷2。

第一、在学生想办法转化成已学过的图形后,没有对同学按所选的方法不同而分组,导致在讨论拼成的图形或分成的图形的面积、底和高与梯形的面积、底和高之间的关系时,浪费了时间,讨论不深入。在以后的教学中,教师应及时筛选有用的信息,并对其分类和引导,有序展示。

第二、其它方法没有展示推导过程,想到此方法的学生的个性没得到张扬,也没有给其它学生充分的思考余地,导致最后小结不管用哪种方法来推,都能推出一样的面积计算公式时,部分学生有疑惑。

第三、学生的表达能力欠佳,不能将自己的发现从数学角度和思维方法表达出来,这也是我们数学教师长期要培养学生的一种数学学习的品质。

第四、有的学生没有完成推导梯形面积的过程,在以后的合作探究中,应让小组内再分为一帮一,以帮助学困生。

《梯形面积》 教学反思3

整个过程我都是以学生为主体,让学生在动手操作中先将梯形转化成我们已经学过的图形,在通过小组合作探讨转化后的图形与原来图形的联系,发现梯形的面积计算公式这样一个过程。由于学生在探讨三角形、平行四边形面积时已经有经验,在此直接交给学生自主研究,通过巡视发现很多小组都能研究出来,这是值得高兴的,但没中不足的有这几点:

1、为了我的计划而赶时间。很多题都是只让学生说一说,没有动手写一写加深记忆。说明我在备课的时候设计的不合理,没有做到精讲多练,在以后的学习当中还应多研究教材,将更多的时间留给学生。

2、板书问题。在和孩子们共同探讨时,我快速的写下关系式,但是不够严谨,所以在以后的教学中首先应该自己做好,才能要求孩子们做好。

3、算式书写格式问题。还是由于时间把握不到位,不敢让学生上台板演,最后导致在写作业的时候部分学生列出算是直接写得数,做的不规范,这是我的一个失误。

4、随然学生说的较多,但总觉得学生说的太少,老师总想帮学生说出来,而且提问的范围也较小,说明自己在教学设计上还存在问题,不能很好的调动孩子们的学习热情,还需要自己的努力。

5、练习题的层次性不强。

课顺利的上完了并不一定就是完美的,经过反思还是有或多或少的不完美,只有把这些不完美后期改进了,那以后的不完美会越来越少。

《梯形面积》 教学反思4

《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。

一、复习旧知,引入新知

本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。

二、推导梯形的面积公式

梯形的面积公式的推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。

三、在练习中巩固提高

本节课的练习既有直接运用公式计算的简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。

《梯形面积》 教学反思5

《新课标》中明确指出“数学教学应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”现就以五年级第九册教材中的《梯形的面积计算公式公式》的教学为例,谈谈自己的几点浅见。

[片断]

师:同学们已经掌握了推导平行四边形、三 ……此处隐藏9136个字……在教师有目的引导下,学生推导出了梯形的面积计算公式。首先,我让学生回顾平行四边形和三角形的面积公式是什么,三角形的面积是如何推导的?然后呈现自学提纲,让学生围绕提纲,结合课本上的内容进行自学,自己动手操作推导梯形面积的计算公式。集体汇报时,对这几种推导方法的处理上也不一样,重点分析了学生发现的第一种方法,但同时也肯定了其他的推导方法。老师一句话中总结,不管用哪种方法来推,都能推导出梯形的面积公式:(上底+下底)×高/2。

本节课也有不足之处:首先,对学生的关注不够,学生计算体系的面积时遇到数字较大而且除以2的被除数是偶数时,应该提醒学生先除以2,再计算,减少了数字繁大所带来的麻烦。第二,在学生想办法转化成已学过的图形后,没有对学生按所选方法的不同进行分组,给学生一个更清晰的思路。第三,学生的个性没有得到张扬,受教学时间的限制,有的学生没有完成梯形面积的推导过程。我将在今后的教学实践中不断吸取教训,不断进步。

《梯形面积》 教学反思13

通过平行四边形和三角形的面积计算公式推导过程的体验,教学这部分内容时,我放手让学生自主探究新知,并引导学生从不同途径验证,学生参与的积极性高,课堂生动活泼,效果显著。

一、创设问题情境,激发学生兴趣

我先出示了一个梯形,引导学生简要复习梯形的基本特征和各部分的名称,然后直接抛出探究任务:梯形的面积是怎样计算的呢?你能用学过的方法把梯形转化成学过的图形,从而推导出梯形的面积公式吗?

学生对具有挑战性的问题还是有很高的兴趣的,所以马上就自发组合成探究小组。

二、培养学生自主学习能力。

考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。

我放手让学生从自己的思维实际出发,给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充分展示自己或正确或错误的思维过程。在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性和积极性,最终达到使学生有效的实现对梯形面积公式的理解的目的。

三、渗透数学中的变换思想。

在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。

但在这节课当中,也存在一定的不足,主要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

《梯形面积》 教学反思14

五年级上册数学第六单元是图形的面积,这一单元主要学习平行四边形面积、三角形面积、梯形面积,规则组合图形的面积和不规则图形的面积的求法。今天我讲的是《梯形的面积》一课,本课在探索活动中学生借助知识的迁移,主动提出了“把梯形转化成学过的图形,并比较转化前后图形的面积”思考问题,主动思考,把一个新的图形面积的计算,转化为已学过的图形面积的计算,从而使问题得到解决。同时将解决生活实际问题转化成求梯形面积的数学问题,呈现多种转化的方法,能够丰富学生对图形的认识,加深对几何基本概念的理解,发展学生的空间观念,提高空间推理和解决问题的能力。

在这堂课的教学中,我依然采用了学生动手拼一拼的活动,让学生自己动手,通过拼图,在头脑中呈现出空间形象。这既能加深学生对面积公式推到的过程,记住面积公式,又能锻炼学生的空间思维,让几何图形在学生的头脑里能够动来动去,为今后的教学打基础。

然而,学生的动不是乱动,我先出示学习目标,再出示学习方法,学生根据学习目标明确这节课需要解决的问题,所要掌握的知识点,然后通过学习方法进行自学。在自学过程中如果遇到难题,可以组内解决,组内解决不了,我们统一由组长提出,同学们共同交流讨论,最后得到总结。

其实,这节课跟学习三角形面积公式那节课所采用的方法是一样的,只不过孩子在拼的过程中产生了不一样的梯形拼出的图形是不一样的情况。这是教师事先没有安排到位导致的,他们有的梯形形状和大小都不一样,在拼的过程中产生了脱节现象。但多数同学做的都很好,用不同种类的梯形拼出的平行四边形,进而推导出梯形的面积公式。

这节课完成情况还算理想,多数同学都能够举一反三,理解梯形面积公式的推导。

《梯形面积》 教学反思15

《梯形的面积》这一课的教学重点是面积公式的推导,利用梯形面积计算公式解决实际问题。

在设计这一课的教学时,我主要考虑体现以下这样几个方面:

1、紧密联系生活。让数学源于生活,归于生活。

数学来源于生活,那么我就从生活中入手设计了一个情境,为了给防洪工作做好充分的准备,我们需要知道堤坝的横截面的面积。让学生产生疑问,如何去求横截面的面积呢?使学生产生兴趣,有好奇心去探索。

2、体现学生的主体性,让每个学生都能主动参与学习。

学生是学习活动的主体。这堂课在设计时,至始至终体现了让学生主动参与学习的基本理念。让学生学会以旧引新,掌握运用知识迁移,学法迁移进行学习

的方法,培养学生的自学能力和探索精神。让学生通过动手操作、和直观演示进行观察、比较、推理等探索过程,得出梯形的面积计算公式,另外,在独立思考问题的基础上进行合作交流,从而提高学生自主发现问题,分析问题,解决问题的能力,以及培养学生团结合作的意识。

3、着重体现学生主动建构知识意义的过程。

本节课的内容重点注重梯形面积计算公式的推导过程,帮助学生理解和记忆梯形的面积计算公式。将新知转化为旧知,来解决问题。本课安排了几个环节。一提出问题:如何求堤坝的横截面面积?(求梯形的面积)。二复习:回忆平行四边形面积和三角形面积计算公式推导,并让学生操作。三尝试:试着将两个一样的的梯形拼一拼能拼成什么图形(平行四边形)尝试利用平行四边形推导梯形的面积计算公式。四探索:利用所学知识,通过拼移、割补、旋转等方法将梯形转化为已学图形,推导出梯形面积计算公式。五小结:梯形面积计算公式。六解决问题:利用梯形面积计算公式求出堤坝横截面面积。

在这节课中学生亲身经历了实践探究的过程,通过自主探索和同伴间的合作交流,充分运用割补,平移和旋转等的数学思想,掌握平面图形之间的内在联系,得出公式推导的多种方法,为学生个性的发挥提供了很大空间,从而使学生获得一种莫大的成就感,因此养成自觉观察、学习和思考的良好习惯,为他们的可持续发展创造了很好的条件。在整个教学过程中教师只是学生学习的组织者、引导者和合作者,全面参与和了解学生的学习过程,对学生进行积极的评价、关注他们的学习方法、学习水平和情感态度,因此学生是朝着预定的目标发展的。

《《梯形面积》 教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档